ORIGINAL ARTICLE

Reduction of *Salmonella enterica* serovar *Choleraesuis* carrying large virulence plasmids after the foot and mouth disease outbreak in swine in southern Taiwan, and their independent evolution in human and pig

Jann-Inn Tzeng, Chi-Hong Chu, Shu-Wun Chen, Chia-Ming Yeh, Chern-Hsun Chiu, Chien-Shun Chiou, Jiunn-Horng Lin, Chishih Chu,*

*Department of Anesthesiology, Chi Mei Medical Center, Yong Kang City, Tainan, Taiwan, ROC
b Department of Surgery, National Defense Medical Center, Taipei, Taiwan, ROC
c Department of Microbiology, Immunology, and Biopharmaceutics, National Chiayi University, Chiayi, Taiwan, ROC
d Department of Pediatric Infection, Chang Gung Children’s Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan, ROC
e The Central Branch Office, Center for Disease Control, Taichung, Taiwan, ROC
f Division of Animal Medicine, Animal Technology Institute Taiwan, Miaoli, Taiwan, ROC

Received 7 March 2011; received in revised form 20 June 2011; accepted 8 December 2011

KEYWORDS
Antimicrobial; Evolution; *Salmonella* Choleraesuis; Virulence plasmid

Background/Purpose: *Salmonella enterica* serovar *Choleraesuis* (S. Choleraesuis) is a highly invasive zoonotic pathogen that causes bacteremia in humans and pigs. The prevalence of S. Choleraesuis in man has gradually decreased since the outbreak of foot and mouth disease in pigs in 1997 in southern Taiwan. The goal of this study was to investigate the change in prevalence of S. Choleraesuis carrying the virulence plasmid (pSCV) in human and swine isolates collected in 1995–2005 and characterize these.

Methods: 380 isolates were collected from human and swine blood samples. Large pSCVs were determined by PCR and Southern blot analysis. Antimicrobial susceptibility and resistance genes, and the phylogenetic association of these large pSCV were analyzed.

Results: The number of isolates harboring the large pSCV was significantly reduced, and their prevalence differed between human and swine isolates. These large pSCVs were a recombinant...
of original 50-kb pSCV and R plasmid. In addition, some large pSCVs lacked two pSCV-specific deletion regions from pef to repC and from traT to samA. These large pSCVs carried the resistance genes blaTEM, adaA2, and sul1, as well as class I integrons of 0.65 and/or 1.9 kb in size, but were non-conjugatable. Phylogenetic analysis demonstrated that the large pSCV evolves independently in human and swine isolates.

Conclusion: S. Choleraesuis with large pSCV was significantly reduced after the foot and mouth disease outbreak and may evolve in human and swine specific isolates.

Copyright © 2011, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. All rights reserved.

Introduction

Of more than 2500 Salmonella enterica serovars, only serovars Abortusovis, Abortus equi, Choleraesuis, Dublin, Enteritisid, Gallinarum or Pullorum, Sendai, and Typhimurium a harbor virulence plasmid (pSCV), which encodes an 8-kb spv operon and ranges from 50 kb in S. Choleraesuis to 285 kb in S. Sendai. Functions of the pSVs are associated with genes on the plasmid and include serum resistance, replication in spleen, proinflammatory response and engulfment of spleen, and inhibition of the lymphocyte to react with T cell mitogen. In addition, the S. Typhimurium antigen is involved in regulation of IL-12 p40 synthesis, survival in the macrophage, and virulence. Recently, recombinant virulence plasmids have been reported in S. Choleraesuis, S. Dublin and S. Typhimurium by introduction of antimicrobial resistance genes, the replicon, and type IV secretion system. S. Choleraesuis was the second most prevalent serovar causing salmonellosis in man in 1991–1996 in Taiwan. Since foot and mouth disease in pigs occurred in 1997, S. Choleraesuis infection in man has reduced considerably. However, multi-drug resistant (MDR) S. Choleraesuis has emerged by gene mutation, and introduction of R plasmid and integron.

Genomic analysis suggests that S. Choleraesuis evolves independently in man and pig. With the emergence of S. Choleraesuis carrying large drug-resistant pSCVs with blaTEM for ampicillin and sul1 for sulfonamide resistance and the occurrence of foot and mouth disease in pigs, we investigated 380 isolates collected from humans and pigs with bacteremia to understand the prevalence of S. Choleraesuis carrying large drug-resistant pSCVs between human and swine isolates, and the antimicrobial susceptibility and resistance genes, class I integron, and phylogenetic relationship of these large pSCVs.

Methods

Bacterial sources and identification

In total, 380 S. Choleraesuis isolates were investigated and included 196 human and 184 swine blood isolates kindly provided by Chiai Chang-Gung Memorial Hospital, CDC, Animal Technology Institute Taiwan, and Animal Disease Control Center of Chiayi County. Information on most isolates was published in 2005. All isolates were further identified in our laboratory by O- and H-antigen agglutination tests and routine culture on XDL agar and LB broth at 37°C.

Antimicrobial susceptibility and resistance genes

The disk diffusion method and the guidelines of CLSI standards were used to determine susceptibility to ampicillin (AMP, 10 μg), chloramphenicol (CHL, 30 μg), kanamycin (KAN, 30 μg), nalidixic acid (NAL, 12 μg), gentamicin (G, 30 μg), streptomycin (STR, 10 μg), tetracycline (TET, 30 μg). Escherichia coli ATCC 25922 was used as the reference strain to validate the results of the antibiotic susceptibility. Disks were from Becton Dickinson (Sparks, Maryland, USA).

Primers used for detection of CS region and adaA, blaPSE, blaTEM, floR, sul1, and tet genes are listed in Table 1. PCR conditions and reagents were described previously. Whole bacteria and purified virulence plasmid DNA were used as DNA template for PCR amplification. PCR products were separated in 2% agarose gel and visualized under UV illumination. PCR products were purified and sequenced.

Plasmid profile and characterization of virulence plasmid

Plasmid number and size were determined by the Kado-Liu method using the standard plasmids of OU7085 (6.6 kb and 50 kb) and OU7526 (50 kb and 90 kb). Virulence plasmid was determined by PCR amplification of spvC and Southern blotting analysis with the PCR product of spvC as probe. Specific deletions of original 50-kb pSCV were determined by PCR amplification with the primers H4-pefF (F) and RepB3 (R) for the pefD-repC deletion and Esam (F) and TraT4 (R) for the traT-samA deletion.

All large virulence plasmids were purified by Geneaid Plasmid Midi Kit (Geneaid Biotech Ltd., Taipei, Taiwan) and then were transformed into E. coli strain pir116. Ampicillin or chloramphenicol transformants with large pSCVs were selected. These large pSCVs were purified by Geneaid Plasmid Midi Kit and digested by restriction enzyme HindIII. The digested DNA fragments were separated by 0.8% GTG agarose and transferred onto Zetaprobe membrane (BioRad, Hercules, CA, USA). The whole plasmid of the 50-kb pSCV of isolate CN36, large 90-kb pSCV of isolate CN29, and non-pSCV of isolate K12 were used as probes for Southern blotting analysis. The phylogenetic relations of the large pSCVs were constructed by Bio-Profil software (Vilber Lourmat Deutschland GmbH, Eberhardzell,
In addition, the large pSCV of the transformants were tested for their conjugatibility based on the methods described previously.27

Statistical analysis

The SAS Chi-square test (2008) was used to investigate the differences in the prevalence of S. Choleraesuis carrying large pSCV between two different factors (hosts and periods) and Student’s t test was performed to analyze the differences between the two hosts and two periods individually.

Results

Determination of large pSCVs

Among 380 S. Choleraesuis isolates, 83.7% (318/380) consisted of at least two plasmids in both human and swine isolates (Table 2). Southern blot and PCR analysis showed that 99.2% (377/380) isolates consisted of the pSCV, which was separated into two plasmid types: the original 50-kb pSCV and the >50-kb recombinant pSCV (Table 2, Fig. 1). In addition, S. Choleraesuis isolates with single pSCV were found to be more prevalent in human than swine samples.
In contrast to 330 isolates carrying 50-kb pSCV, only 45 isolates harbored the large pSCV, and there was a significant difference in prevalence between human and swine isolates (Table 2 and 3).

In 1997–1998, occurrence of foot and mouth disease severely damaged pig production in Taiwan. A significant decrease was found in the prevalence of isolates carrying large pSCV between the two periods for human isolates (41.67% before 1998 vs. 14.67% after 1997, \(p < 0.05 \)) and swine isolates (34.38% before 1998 vs. 1.31% after 1997; \(p < 0.05 \)) (Table 3). After foot and mouth disease, strains with the large pSCV were found to be significantly higher in prevalence in human than swine isolates (14.67% in human vs. 1.31% in swine isolates, \(p < 0.05 \)).

Characterization of the large pSCV

Apart from those isolates reported in 2001, 2 33 isolates carried large pSCVs ranging from 60 to >140 kb in size and were resistant at least to AMP, CHL, or TET (Table 4). Because competent \(E. \) coli pir116 is resistant to STR, presence of STR resistance on the pSCVs was determined by PCR amplification of the \(aadA \) gene, which was found in all but one large pSCV isolate (Table 4). Furthermore, these large pSCVs contained the antimicrobial resistance genes \(blatem \) and \(sull \), and 0.65-kb and/or 1.9-kb CS regions, which included the \(sat \) and \(aada-dhfr-aada2 \) genes, respectively. Previously, we determined two deletions in \(pefD-repC \) and \(traT-samA \) regions in 50 kb-pSCV. 12 Here, PCR examination of these large pSCVs found that pB22, pB25, pB82, pCN28, and pCN29 lacked the \(pefD-repC \) deletion region, pCY10 and p1030 lacked the \(traT-samA \) deletion region, and pMS19147 was without both deletion regions (Table 4).

After digestion with \(\text{HindIII} \), 50-kb pSCV were separated into six major fragments: 15.9-kb H1 (\(\text{para-incR-tipA-spv-RAB} \)), 12.2-kb H2 (\(\text{rsd-rcr-rcpFB-pefAC} \)), 11.8-kb H3 (partial \(\text{repFIIA-finO-trax-traT-samA} \)), 3.8-kb H4 (\(\text{pefD-orf5-rcr} \)), 2.7-kb H5 (\(\text{pefD-orf5-rcr} \)), and 1.8-kb H6 (\(\text{pefD-orf5-rcr} \)).
partial repFIIA), 3.7-kb H5 (spvCD), and 2.6-kb H6 (samB-parBS). DNA fragment profiles of HindIII-digested large pSCVs showed that changes in fragment size were mostly found in the larger H1-H3 fragments and few in smaller H4-H6 fragments (Fig. 2A). The change in the fragment size or absence of any one of these six fragments suggests the possible recombination between 50-kb pSCV and R plasmid in this fragment.

Using the 50-kb pSCV of CN36, R plasmid from isolate K12, and large pSCV of CN29 as probes, Southern blot analysis demonstrated that all large pSCVs were recombinants of the 50-kb pSCV and R plasmids. However, we did not observe any conjugatibility of these large pSCVs. The phylogenetic relations of the large pSCVs showed that the plasmid may evolve in man and pig independently because we observed that all large pSCVs of all human isolates belong to Cluster A in contrast to Cluster B for all swine isolates (Fig. 2B).

Table 4 Characterization of the large virulence plasmids of S. Choleraesuis isolates

<table>
<thead>
<tr>
<th>Name of pSCV</th>
<th>Sources</th>
<th>Plasmid size (kb)</th>
<th>Antibiogram</th>
<th>Deletion region</th>
<th>(b l a_{\text{TEM}})</th>
<th>(a a dA2)</th>
<th>sull</th>
<th>CS region (kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pB10</td>
<td>Human</td>
<td>90–140</td>
<td>AT</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pB130</td>
<td>Human</td>
<td>90–140</td>
<td>AT</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pB22</td>
<td>Human</td>
<td>140</td>
<td>ACKT</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pB24</td>
<td>Human</td>
<td>> 140</td>
<td>ACKT</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pB25</td>
<td>Human</td>
<td>140</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>pB30</td>
<td>Human</td>
<td>> 140</td>
<td>ACKT</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pB46</td>
<td>Human</td>
<td>90–140</td>
<td>ACT</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pB52</td>
<td>Human</td>
<td>90–140</td>
<td>ACKT</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pB56</td>
<td>Human</td>
<td>> 140</td>
<td>AKT</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pB63</td>
<td>Human</td>
<td>> 140</td>
<td>AKT</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pB74</td>
<td>Human</td>
<td>140</td>
<td>ACKT</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pB75</td>
<td>Human</td>
<td>90–140</td>
<td>AK</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pB76</td>
<td>Human</td>
<td>90–140</td>
<td>AT</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pB82</td>
<td>Human</td>
<td>90–140</td>
<td>ACT</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pB85</td>
<td>Human</td>
<td>140</td>
<td>ACKT</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>pB97</td>
<td>Human</td>
<td>> 140</td>
<td>ACT</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pB103</td>
<td>Human</td>
<td>50–90</td>
<td>AC</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>pC05</td>
<td>Human</td>
<td>50–90</td>
<td>ACT</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pCN28</td>
<td>Swine</td>
<td>> 90</td>
<td>CT</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>pCN29</td>
<td>Swine</td>
<td>> 90</td>
<td>CT</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>pCN30</td>
<td>Swine</td>
<td>50–90</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>pCN31</td>
<td>Swine</td>
<td>> 90</td>
<td>CT</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>pCN32</td>
<td>Swine</td>
<td>> 90</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>pCN656</td>
<td>Human</td>
<td>> 90</td>
<td>T</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>pCY10</td>
<td>Human</td>
<td>90–140</td>
<td>CT</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>pK123</td>
<td>Human</td>
<td>50–90</td>
<td>AC</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pK27</td>
<td>Human</td>
<td>> 90</td>
<td>CT</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>pC34</td>
<td>Chicken</td>
<td>> 90</td>
<td>ACKT</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pK45</td>
<td>Human</td>
<td>> 90</td>
<td>ACK</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pMS18403</td>
<td>Human</td>
<td>> 90</td>
<td>ACT</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>pMS19147</td>
<td>Human</td>
<td>90</td>
<td>CT</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pMS22872</td>
<td>Human</td>
<td>> 90</td>
<td>T</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P1030</td>
<td>Human</td>
<td>50–90</td>
<td>ACT</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

1. A specific deletion of pSCV in \(pefD\)-repC region for A and \(traT\)-samA region for B.
2. 1.9 kb CS region consists of genes \(aad-dhf\)-\(aadA2 \); 0.65 kb consists of \(sat \) encoding streptothricin acetyl-transferase.

Discussion

The highly invasive and narrow-host S. Choleraesuis can transmit between man and pig to cause bacteremia in both hosts and appears to evolve independently in these species. In an early study of human isolates collected in 1996–1997, we reported recombination or integration of 50-kb pSCV and R plasmid to form large recombinant pSCVs of 75–140 kb, which can increase the plasmid stability and host fitness under antimicrobial stress. Thereafter, an increase in isolates carrying large pSCVs could be observed. However, the prevalence of isolates harboring large pSCVs significantly decreased in human and swine isolates after the foot and mouth disease outbreak (Table 3), which led to the sacrifice of nearly 4 million pigs in 1997 in Taiwan. With reduction in infection sources from pig to human, the prevalence of S. Choleraesuis infection in humans decreased from 2003 to 2007. However, isolates carrying...
the large pSCVs were more prevalent in human than swine isolates (Table 3). Phylogenetic analysis of all large pSCVs revealed independent evolutionary origins for human and swine isolates (Fig. 2B) and confirms that *S. Choleraesuis* evolves in man and pig independently. In addition, this dramatic decrease of the isolates carrying large pSCV seems to be associated with the reduction in the prevalence of human *S. Choleraesuis* infection, implying that large pSCV may play an important role in infection in man.

Analysis of *Hind*III-digested patterns of 31 large pSCV demonstrated diverse recombination sites, mostly located in the large H1, H2, and H3 fragments, which consist of repA/repC, pef operon, *traT*–*samB* regions, and *tlpA* and *rlgA* genes. A gene located in the 5′ of the *pef* operon and...
rgA encodes a probable site-specific recombinase. The recombinant large pUO-StVR2 of S. Typhimurium showed common variations in IncFIB/repA2, rck and the pef operons, Additionally, p9131 revealed the rck ~ src region as a recombination hotspot. In the present study, our results also demonstrated eight large pSCVs lacking either pefD-repC or traT-samA deletion regions (Table 4), suggesting that the flanking areas of these two regions may be hotspots for recombination.

In contrast to 314 isolates harboring the original 50-kb pSCV and an extra R plasmid, we only obtained 45 isolates that carried large pSCV with considerable genetic changes, and these were significantly reduced in prevalence in human and swine isolates after the foot and mouth disease outbreak (Tables 2, 3 and 4). These results imply the clonal dissemination (Fig. 2B) or plasmid conjugation of the large pSCV. However, 50-kb pSCV lacks the oriT and is unable to effect conjugation or mobilization. It is possible that large pSCV can become conjugatable through recombination with R plasmid as has occurred in S. Typhimurium. However, we did not find that any large pSCVs were conjugatable, indicating the R plasmids may be incombinatole or have lost their conjuguability during recombination.

Similar to the earlier report, this study observed the presence of blafem and sul on the large pSCV (Table 4). The gene sulA was located in 1.9-kb class I integron containing aadA-dhfr-aadA2, which was also identified in the R plasmid of S. Choleraesuis and the recombinant plasmids of S. Typhimurium. Host bacteria carrying this large multidrug-resistant pSCV can increase their fitness in an antimicrobial environment. Because of the existence of antidote system genes, the ccdAB operon on the pSCVs ensures stable plasmid existence in their host serovar. Although antimicrobial stress frequently induces the emergence of the recombinant drug-resistant plasmids, these recombinant plasmids are not stable and evolve more quickly to cause more variations in plasmids such as deletions when the stress is removed. With similar evolutionary origins in the present study (Table 4, Fig. 2), these large pSCV changed considerably in size, CS region, and antimicrobial resistant genes indicating that recombination can recur in the R plasmid to remove the drug-resistance gene. Because of the relatively small number before 1998, the possibility of sampling bias could not be ruled out and the representative sampling may not be good enough to indicate which S. Choleraesuis isolates were carrying large pSCV in that period.

In conclusion, a reduction of isolates carrying large pSCV was observed after foot and mouth disease in pig and may be associated with decrease in prevalence of S. Choleraesuis in humans. These large pSCVs were multi-drug resistance and differed in restriction fragment length polymorphism pattern between human and swine isolates.

Acknowledgments

This work was funded by grants from National Science Council under grant NSC96-2314-B-815-001 Executive Yuan, Taiwan and by a collaborating grant from Chi Mei Medical Center.

References

