LPS-induced RNI and tolerance

J Microbiol Immunol Infect
2005;38:164-168

Corresponding author: Dr. Hossein Nahrevanian, Department of
Parasitology, Pasteur Institute of Iran, Pasteur Avenue, Tehran 13164,
Iran.
E-mail: mohbghr@yahoo.co.uk

Endotoxin, with its toxic principle lipopolysaccharide (LPS), forms the major component of the outer membrane of Gram-negative bacteria with molecular masses of 2-20 kDa. LPS molecules consist of a bisphosphorylated lipid (lipid A) forming the matrix of the outermost membrane leaflet and a hydrophilic polysaccharide [1]. LPS administration is generally carried out as a standard stimulus to induce inflammation or pyrexia in experimental animals [2], which also results in the clinical features of endotoxemia, including hypotension, metabolic acidosis, hyperglycemia and hyperkalemia [3].

Previous study demonstrated that intact LPS from various bacteria was able to bind specifically to macrophages and human monocytes by recognition receptors which initiate the innate immune response [1], and to modulate enzyme activity in rabbit endothelial cells as a result of detergent action [2]. Monocytes and macrophages are highly sensitive LPS targets; Langerhans and dendritic cells also respond to LPS stimulation as antigen presenting cells, which probably represents its differential roles in the innate immunity [4]. LPS has been reported to induce production of a number of immune factors including: nitric oxide (NO), tumor necrosis factor (TNF-α), interferon (IFN)-γ and interleukin (IL)-1 in rat hepatocytes [3,5] and mouse macrophages [6,7]; reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI) in balb/c mouse macrophages and hepatocytes [8]; NO synthase (NOS) isoforms in rat aortic smooth muscle cells [9]; and inducible NOS (iNOS) and NO 2 - in rat glomerular mesangial cells [10]. However, the duration and amount of induction by LPS was varied and conflicting among different studies [9,10].

Although its optimal production requires an additional signal by TNF-α, IFN-γ, IL-1 and LPS [11-13], IFN-γ is reported to have a critical role in the NO pathway. LPS stimulates macrophages to express iNOS by induction of endogenous IFN-γ[14], resulting in the time-dependent accumulation of NO [15]. In addition, NO production is regulated in vivo by T-helper 1-associated cytokines [16]; therefore, IFN-γ seems to
be central in the regulation of TNF-α and NO production during infection [17].

Endotoxemia is a pathophysiologic process which involves multiple mediators and cytokines [18] and leads to inflammation and injury [19]. LPS is distributed by circulation and eliminated by immune mechanisms; however, the pathology might be mediated by soluble factors [20] and cytokines [21]. Exposure to LPS alone may lead to NO tolerance, but exposure to IFN-γ plus LPS may be more effective at inducing tolerance [22]. There are some common features of the different LPS/host combinations which have been reported.

Although the pathology of the host response to LPS is heterogeneous, little is known about the basis of this variation, and therefore the type of LPS and strain of the host are important determinants of the disease profile [1]. The objective of this study was to investigate the time course of RNI production as NO response after in vivo injection of LPS from Salmonella abortus equi in Naval Medical Research Institute (NMRI) white mice, and also to determine whether differences in the host genetic profile are responsible for tolerance variations against bacterial LPS by comparing responses in NMRI and Balb/c mice.

Materials and Methods

Animals

Animals used in this experiment were outbred NMRI white mice and inbred Balb/c mice (4-6 weeks). All animals were supplied by the Laboratory Animal Unit of the Pasteur Institute of Iran located in Karaj. Their body weight was 20.2 ± 0.6 g, when initially measured on day zero.

Ethical declaration

Animal experiments were carried out according to the ethical standards formulated in the Declaration of Helsinki, and measures taken to protect animals from pain or discomfort are mentioned.

LPS dose and RNI assessment times

LPS 10 mg from Salmonella abortus equi species (Sigma Chemical Co. UK) was dissolved in sterile, pyrogen-free 0.9% normal saline. After a single intravenous dose of LPS (0.5 mg/kg), NMRI white mice were humanely killed at 30, 60, 120 or 180 min after injection. The control group received no injection and 4 sets of mice killed at different times after LPS injection were considered as the test groups (n = 5). Mice were terminally anesthetized by inhalation of diethyl ether (BDH Analar® Co., UK) and blood was collected by cardiac puncture into a 1 mL syringe containing 0.05 mL (50 IU) heparin (Monoparin, CP Pharmaceuticals Ltd., UK). After blood collection, animals were humanely sacrificed by cervical dislocation. Plasma was prepared by centrifuging blood at 1500 relative centrifugal force (RCF) [MSE; Centaur 2 Co., UK] for 10 min, collected and stored at −70°C to measure RNI by Griess microassay.

Animal tolerance to LPS

In order to evaluate the tolerance variability in the different strains of mice, descending doses of LPS including 4, 1 and 0.5 mg/kg of body weight were injected sequentially by different routes including intravenous into the tail vein of the NMRI white mice (n = 16) and subcutaneously into the abdominal area of the Balb/c mice (n = 16). Different routes of injection (intravenous, subcutaneous) were selected based on previous data showing susceptibility of mice to LPS [23]. The number of surviving mice in each group was counted during the 24 h observational period after inoculation.

Griess microassay

The Griess reaction used for the assay of nitrite was adapted from previously described methods [24]. Standard curves for both sodium nitrite and sodium nitrate (Sigma Chemical Co.) were prepared. Sixty µL samples were treated with 10 µL nitrate reductase (NADPH Aspergillus species 5 U/mL; Sigma Chemical Co.) and 30 µL NADPH β-nicotinamide adenine dinucleotide phosphate (1.25 mg/mL, Sigma Chemical Co.). 200 µL Griess reagent [5% phosphoric acid, 1% sulfanilic acid and 0.1% N-(1-naphthyl-1)-ethylenediamine dihydrochloride, all from Sigma Chemical Co., dissolved in 100 mL d.H2O] was then added and proteins were subsequently precipitated by 200 µL trichloroacetic acid 10% (BDH, UK). Tube contents were vortex mixed then centrifuged at 13,400 RCF (Model 1-13 Microcentrifuge, Sigma, UK). Duplicate 200 µL samples of supernatants were transferred to a 96-well flat-bottomed microplate (Costar, USA) and absorbances read at 520 nm using a microplate reader (Dynatech, MRX, USA). Values for the concentration of nitrite assayed were calculated from standard calibration plots for NaNO2 (sodium nitrite) and sodium nitrate (NaNO3). The reaction was based on the formation of a chromophore to form a purple red compound. Standard curves were plotted for serial dilutions of both NaNO2 and NaNO3 diluted in
plasma versus related absorbances at 520 nm. Values for the concentration of nitrite assayed were calculated from standard calibration plots for NaNO₂ (r² = 0.994) and NaNO₃ (r² = 0.997) following nitrate reductase action [25].

Statistical analysis

Data for RNI (NO₂⁻ and NO₃⁻) concentrations are presented as raw values for different mice. Data are also shown as mean ± standard error of the mean for levels of NO metabolites and compared using analysis of variance test with GraphPad Prism software (Prism-Software Incorporated, San Diego, California, USA). A p value <0.001 was considered statistically significant.

Results

In this study, induction of RNI by LPS was assessed at 30, 60, 120 and 180 min after intravenous injection into white NMRI mice. GMA revealed that in vivo stimulation with LPS was able to induce the production of high levels of RNI compared to untreated controls (p<0.001). Comparison of RNI at different time points after a single dose (0.5 mg/kg) of LPS showed that maximum RNI induction occurred at 180 min after stimulation (813.3 ± 124.1 µM, n = 5). This time course of the RNI response to LPS is shown in Fig. 1. RNI values at 120 and 60 min after LPS injection were 209.9 ± 25 and 188.2 ± 12.5 µM, respectively. No differences of RNI induction were observed after 30 min of LPS injection (101.8 ± 12.4 µM) when compared with untreated controls (101.7 ± 12.4 µM) [Fig. 1].

The greatest RNI levels were found at 180 min after injection in NMRI mice. This response delay from LPS administration to maximum induction, was the longest in this study. As a delay of more than 180 min was observed to be fatal for animals and resulted in severe toxic symptoms, animals were humanly killed no later than 180 min after injection to prevent suffering, according to the ethical standards formulated in the Declaration of Helsinki.

The tolerance to LPS was different between NMRI and Balb/c mice. The 2 routes of injection (intravenous or subcutaneous) were selected based on previous study showing greater relative susceptibility of mice to LPS using these routes [23]. Analysis of the survival rate during the 24 h after inoculation revealed 50% mortality including 8/16, 4/8 and 2/4 Balb/c mice after each 4, 1 and 0.5 mg/kg LPS injection, respectively. Surviving mice in each group were given the next LPS injection 24 h after the previous dose. At the end of the experiments, all 16 NMRI mice had survived after the 3 sequential intravenous injections (100% survival rate). However, the 14 Balb/c mice died even after subcutaneous injection of mentioned doses and only 2 mice tolerated all injections and survived the entire experimental course (12.5% survival rate) [Fig. 2].

Discussion

Our results suggest the overproduction of mediators (e.g., NO) and cytokines (e.g., TNF) is toxic, but that the damage caused by this toxicity depends on the tolerance of the host. Our results also suggest that activation of mouse immune response by LPS was related to the dose and the time after administration.

In our previous study [26], the LPS dose of 0.5 mg/kg, an intravenous injection route and a time of 180 min after injection induced the greatest RNI production in MF1 mice, which supports the results of the current study. However, previous studies reported different results for several different doses, routes of injection and in different strains of mice [6,10,18,23, 27]. Our findings are in agreement with a previous study which demonstrated the level of NO induction by LPS varied depending on the drug vehicle, route of
Data resulting from administration of several different types of NO donors and NO inducers showed NO donors generate NO alone, whereas NO inducers (e.g., LPS) produce other immune factors including cytokines such as TNF-α, IFN-γ and IL-1 in addition to NO [23]. Moreover, the time course and amount of NO release after treatment with NO inducers and NO donors was suggested to differ between in vivo and in vitro applications, with a shorter time course and lower amount of NO release in vivo than in vitro [28]. This might be because other host immune mechanisms may interfere and interact with the NO pathway to remove and scavenge its metabolites from the body.

In this study, the tolerance to LPS varied between NMRI and Balb/c mice using intravenous or subcutaneous routes of injection. Comparison of the survival rate at the entire experimental course revealed a remarkable tolerance variation between these 2 mice strains to LPS inoculation (12.5% in Balb/c and 100% in NMRI mice). Tolerance to LPS was induced via high-dose injection and followed by sequentially decreasing doses. Bacterial LPS acts on macrophages to release chemokines; at high levels, these chemokines may produce the syndrome of septic shock. By contrast, low quantities of released cytokines have only local effects, whereas with moderate quantities, systemic effects can be detected [29]. Our observation suggested that tolerance to high-dose LPS as a first preliminary injection was greater by healthy normal mice.

In conclusion, this study found clear differences in the tolerance of NMRI and Balb/c mice to LPS. The high death rate after each subcutaneous injection in Balb/c mice and the survival of all NMRI mice after intravenous injection suggested variability in the tolerance of bacterial LPS. Balb/c mice showed higher susceptibility than NMRI mice to LPS injection, despite subcutaneous administration, which releases LPS more slowly into the circulation. This could be associated with the genetic profiles of host strains leading to different responses against bacterial LPS. The differences in tolerance depended on the dose, route of injection and strain of mice. However, the immune response to specific antigens is complex and dependent on various factors, and needs to be clarified by complementary studies.

Acknowledgment

We thank Dr N Namvar Asl from Karaj Laboratory Animal Unit, Pasteur Institute of Iran for kind provision of animals.

References

LPS-induced RNI and tolerance