Comparisons between scolex and membrane antigens of *Cysticercus fasciolaris* and *Cysticercus cellulosae* larvae for immunodiagnosis of neurocysticercosis

Nitin Shukla¹, Nuzhat Husain¹, Jyotsna¹, Suman Gupta², Mazhar Husain³

¹Department of Pathology, King George’s Medical University; ²Department of Parasitology, Central Drug Research Institute; and ³Department of Neurosurgery, King George’s Medical University, Lucknow, India

Received: March 16, 2007 Revised: January 13, 2008 Accepted: March 19, 2008

The antigen source for enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunotransfer blot for neurocysticercosis is generally *Taenia solium*. A comparison of the membrane and scolex extracts of *Cysticercus cellulosae* and *Cysticercus fasciolaris* (larval stage of *Taenia taeniaeformis*) for the immunodiagnosis of neurocysticercosis has been performed. *C. fasciolaris* cysts were produced experimentally in rat liver. *C. cellulosae* was obtained from muscle of infected pigs. The antigen extracts of membrane and scolex were compared using ELISA in 50 patients and 50 control participants to detect immunoglobulin (Ig) G or IgM antibodies. Proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were immunoprobed using pooled and individual sera. The gold standard for diagnosis was visualization of scolex in ring lesions by magnetic resonance imaging or computed tomography scans. ELISA for IgG antibodies using *C. fasciolaris* membrane had the highest sensitivity of 94%. Specificity ranged from 78% to 90%. Immunoreactive bands common to all 4 antigens were seen between 60 and 70 kDa and 40 and 45 kDa. The presence of comparative antigenic bands between human and rat pathogens provides convincing evidence for use of *C. fasciolaris* antigens for immunodiagnostic procedures. The antigen can be produced in small animals in standardized laboratory conditions within 60 days.

Key words: *Cysticercus*; Enzyme-linked immunosorbent assay; Immunoblotting; Neurocysticercosis

Introduction

Taenia solium cysticerci are pathogenic to humans and cause cysticercosis by accidental infestation. Cysts in the central nervous system present with high morbidity, including epilepsy, meningitis, hydrocephalus, and other manifestations. Radiological studies form the mainstay of diagnosis. However, diagnostic specificity is not high and immunoassays are frequently used as adjuncts to diagnosis. The antigen in immunoassays is frequently derived from *T. solium*, although other species of cysticerci, including *Taenia crassiceps* [1-3], *Taenia hydatigena* [4], and *Taenia saginata* (adult worm) [5], have been tested in immunological assays such as enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunotransfer blot (EITB) with good results. These authors have previously reported the use of membrane antigen of *Cysticercus fasciolaris*, the larvae of *Taenia taeniaeformis*, for the detection of immunoglobulin (Ig) G and IgM antibodies in serum of patients with neurocysticercosis using ELISA [6]. The study described here was performed to compare the use of membrane and scolex antigens of *C. fasciolaris* (the rat pathogen) with those of *Cysticercus cellulosae* (the human pathogen) to detect IgG and IgM antibodies by ELISA in the serum of patients with neurocysticercosis and healthy and infected control participants. Comparison of the antigenic bands of the membrane and scolex antigens of the 2 pathogens was done by immunoblot assay.

Corresponding author: Dr. Nuzhat Husain, MD, Department of Pathology, King George’s Medical University, Lucknow 226003, India. Email: drnuzhathusain@hotmail.com

© 2008 Journal of Microbiology, Immunology and Infection
Methods

Study design
This was a case-control study for diagnostic test evaluation performed at a tertiary hospital, King George’s Medical University, Lucknow, India. Fifty patients with neurocysticercosis, aged 5 to 49 years (mean ± standard deviation, 8.8 ± 11.4 years). The male-to-female ratio was 35:15. Neurocysticercosis was diagnosed by the absolute criterion of presence of ring-enhancing lesions by magnetic resonance imaging (MRI) and computed tomography scan with visualization of scolex as an eccentric nodule [7]. Forty one patients had single parenchymal ring-enhancing lesions and 9 had multiple ring-enhancing lesions. The 50 control participants included 36 patients with tuberculosis diagnosed by MRI, magnetic resonance spectroscopy, and response to therapy, 4 with hydatid disease of the liver, 2 with intestinal taeniasis, and 8 healthy participants.

Preparation of antigens
The gravid segments of T. taeniaeformis, collected from the stool of infested Indian cats, were teased in normal saline to release eggs. Mature and viable eggs were counted and the volume of the stock suspension was then adjusted using normal saline so that each mL contained 1000 eggs. Adult male Rattus rattus were given 0.2 mL of egg suspension through a feeding needle attached to a tuberculin syringe. After 60 days, the eggs developed into mature cysticerci inside the rat liver. The rats were anesthetized, the liver was collected from freshly slaughtered heavily infected pigs, obtained from the butchery, fresh on ice. The membranes and scolices were washed thoroughly in cold PBS. Antigen was prepared by homogenization, sonication, and centrifugation as described above for C. fasciolaris antigens. The suspension was cold centrifuged at 20,000 g for 30 min at 4°C.

C. cellulosae antigen was prepared from cysticerci of T. solium collected from freshly slaughtered heavily infected pigs, obtained from the butchery, fresh on ice. The cysts were dissected without any adherent host tissue, and kept on ice. Dissected cyst membrane and scolices were washed thoroughly in cold PBS. Antigen was prepared by homogenization, sonication, and centrifugation as described above for C. fasciolaris. The supernatants at a final concentration of 150 μg/dL of protein were used as concentrated antigen. Four antigens — C. fasciolaris membrane (CFM), C. fasciolaris scolex (CFS), C. cellulosae membrane (CCM), and C. cellulosae scolex (CCS) — were obtained, aliquoted, and stored at –80°C.

All animal studies were done after prior ethical approval was obtained, and the principles of the Declaration of Helsinki were followed.

Enzyme-linked immunosorbent assay
Indirect antibody detection by ELISA was performed. Checkerboard titration was done to optimize the dilution of antigen, sample, and secondary antibody. Polystyrene-coated flat-bottomed microtiter plates were coupled with 100 μL of antigen, CFM, CFS, CCM, and CCS in bicarbonate buffer at a dilution of 1:1000, and stored overnight at 37°C. Protein coated in each well was 150 μg. Plates were washed 10 times with PBS with 0.1% Tween 20 (PBST) [Bangalore Genei, Bangalore, India], blocked with 2% bovine serum albumin (BSA) in PBS for 1 h, washed 5 times in PBST, incubated with 100 μL of serum diluted 1:1000 in PBS for 2 h, washed 5 times with PBST, incubated with secondary antibody-horse radish peroxidase tagged antihuman IgG or IgM (Dakopatts, Copenhagen, Denmark) diluted 1:500 for 1 h, washed 5 times with PBST, and color developed with tetramethylbenzidine at 1:20 dilution for 15 min. Optical densities (ODs) were measured at 450 nm after stopping the reaction with 5 N sulfuric acid. Eight sets of ELISA were run using 4 different antigens for the detection of anticysticercus human IgG and IgM antibodies. ELISA was performed blindly for all samples from patients and control participants. Negative, low, and high positive control samples were run in each batch. All samples were run in triplicate and the test was repeated on 2 different days to check for reproducibility of results.

Sodium dodecyl sulfate electrophoresis
The membrane and scolex antigens (15 μg/lane) of both parasites were run on 15% acrylamide gel in a mini vertical gel chamber with sodium dodecyl sulfate buffer along with prestained molecular weight standards (Bio-rad, Hercules, CA, USA). Protein samples were denatured in Laemmli sample buffer with betamercaptoethanol by heating at 100°C for 5 min. Separation was checked with silver staining.

Silver staining
The gel was fixed for 1 h in a fixing solution (50 mL methanol, 1 mL acetic acid, 38.8 mL water, and 100 μL formaldehyde), followed by washing and the addition of silver nitrate in the dark. Developer (3.0 gm sodium carbonate, 49 mL water, and 50 μL formaldehyde) was added until the protein bands became visible.
When the bands were half visible, the reaction was terminated by adding 5 mL of 2.3 M citric solution.

Immunoblot assay

Bands were transferred to nitrocellulose membrane in a transfer apparatus (Bio-rad) using Tris glycine buffer at 100 V for 1 h. The nitrocellulose membranes, cut into sections each with 4 protein lanes and standards, were blocked with 2% BSA in Tris buffer overnight. The membranes were incubated with individual case/control or pooled case/control sera at 1:500 dilution for 2 h, washed 3 times with 1% Tween 20 in Tris, and incubated with antihuman IgG/IgM (Dakopatts) at 1:1000 dilution (1 h). Bands were developed with chromogen diaminobenzidine (Sigma-Aldrich, St. Louis, MO, USA). The sera from 10 case samples and 5 control samples were tested individually and pooled test and control sera were also tested.

Statistical analysis

Sensitivity, specificity, and positive and negative predictive values of the ELISA tests were assessed. Significance of difference was assessed by Student \(t \) test. A \(p \) value of <0.05 was considered significant.

Results

Enzyme-linked immunosorbent assay

The mean ODs of the case and control samples obtained by ELISA are shown in Fig. 1. The results of ELISA using CCM, CCS, CFM, and CFS antigens for the detection of IgG and IgM antibodies in the serum of 50 patients and 50 control participants are shown in Table 1. The sensitivity of ELISA for detection of antibodies in serum ranged from 76% to 94% and the specificity ranged from 78% to 90%. The highest sensitivity of 94% was obtained for CFM ELISA for detection of IgG antibodies while 90% specificity was obtained for CFS and CCM in IgM ELISA and CCS in IgG ELISA. No significant differences were observed between ELISA results using different species or for membranes versus scolices (\(p=0.8 \)). The distribution of ODs among patient and control samples was well separated.

Silver staining

The silver-stained gel showed multiple fine and prominent bands ranging from 201 kDa to lesser molecular weight bands of less than 31.8 kDa in all 4 antigens (Fig. 2A). The maximum number of bands was observed for CCM. Several protein bands were common in membrane and scolex antigens of both species.

Immunoblot analysis

Multiple thick and fine bands were visualized for all 4 antigens, varying in size from 18 to 200 kDa (Fig. 2B). *C. fasciolaris* showed 6 antigenic bands in membrane and 8 in scolex. *C. cellulosae* showed 8 antigenic bands in membrane and 7 in scolex. Prominent bands between 60 to 70 kDa and 40 to 45 kDa were common to membranes and scolices. These bands were recognized by both IgG and IgM antibodies in all patient sera and were more intensely stained than other bands. Six of 10

Fig. 1. Distribution of mean optical density (OD) in patient and control samples by enzyme-linked immunosorbent assay (ELISA) using 4 different antigens. (A) Immunoglobulin (Ig) G ELISA; and (B) IgM ELISA. CCM = *Cysticercus cellulosae* membrane; CCS = *C. cellulosae* scolex; CFM = *Cysticercus fasciolaris* membrane; CFS = *C. fasciolaris* scolex.
patient sera recognized low molecular weight immuno-reactive bands between 18 to 25 kDa for all 4 antigens. Multiple fine bands of molecular weight more than 100 kDa and less than 18 kDa were variably recognized in membrane and scolex antigens in pooled sera (Fig. 2B). There was considerable overlap in the immunoreactivity of corresponding bands of different antigens using individual and pooled patient sera. Cross-reactivity with control sera was not observed with the prominent bands in the regions described above. A few finer bands in the high molecular weight region showed immunoreactivity (Fig. 2C).

Discussion

For ELISA, the cut-off OD was calculated from the receiver operating characteristic curves. Samples were run in duplicate and the mean OD was taken as the OD of the sample. A variation of >10% in the sample OD was not acceptable and such samples were tested again. The tests were repeated on 2 different occasions and reproducibility of the results was 100%. ELISA has been widely employed as a useful tool for the diagnosis of neurocysticercosis using serum and cerebrospinal fluid [8-10] because of its technical simplicity. The sensitivity of ELISA for detection of antibodies in serum has varied from 65% [11] to 93% [12]. In this study, sensitivity between 76% and 94% and specificity between 78% and 90% were observed (Table 1).

The results of the immunoblot analysis suggest that antigenic bands of *C. fasciolaris* and *C. cellulosae* in the range of 18 to 25 kDa, 40 to 45 kDa and 60 to 70 kDa are excellent candidates for the development of an optimal test for serological diagnosis of cysticercosis. These immunoreactive bands have also been observed in other publications using *C. cellulosae* antigen [13-20]. Katti and Chandramukhi analyzed various antigenic fractions of porcine pathogen and observed an immunodominant antigen with molecular weights between 64 and 68 kDa and 24 and 28 kDa [13]. Grogl et al have also observed polypeptides and molecular weights of 64 kDa, 53 kDa, and 30 to 52 kDa was present in all antigenic fractions [14]. Grill et al have shown a high incidence of serological markers for cysticercosis among patients with epilepsy, and observed significant bands in western blot analysis with molecular weights of 13 kDa, 14 kDa, and 18 kDa in the sera of children with epilepsy [15]. Bragazza et al [16] and Pardini et al [17] have observed strong immunoreactivity at 18 kDa and 14 kDa using *T. crassiceps* antigen. Aguilar-Rebolledo et al have reported 24 kDa, 39 to 42 kDa, and 50 kDa as the most frequently recognized proteins in enzyme-linked immunoelectroblot [18]. Proaño-Narvaez et al reported 39 to 42 kDa, 24 kDa, and 13 kDa as immunodiagnostic bands [19]. In a seroprevalence study of patients with epilepsy by Bucardo et al, the bands most frequently recognized were 39 to 42 kDa, 24 kDa, and 14 kDa [20].

It appears that *C. fasciolaris* is antigenically related to the porcine and human pathogen, and is a practical alternative as an antigen source for ELISA and EITB assay for human cysticercosis. However, cysticercosis can be produced in rat liver within a shorter time of

<table>
<thead>
<tr>
<th>Antigens</th>
<th>CFM</th>
<th>CFS</th>
<th>CCM</th>
<th>CCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG ELISA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>47</td>
<td>44</td>
<td>41</td>
<td>44</td>
</tr>
<tr>
<td>Negative</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>Negative</td>
<td>42</td>
<td>40</td>
<td>39</td>
<td>45</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>94</td>
<td>88</td>
<td>82</td>
<td>88</td>
</tr>
<tr>
<td>Specificity</td>
<td>84</td>
<td>80</td>
<td>78</td>
<td>90</td>
</tr>
<tr>
<td>PPV</td>
<td>85.4</td>
<td>81.4</td>
<td>78.8</td>
<td>89.7</td>
</tr>
<tr>
<td>NPV</td>
<td>83.3</td>
<td>86.9</td>
<td>81.2</td>
<td>88.2</td>
</tr>
<tr>
<td>IgM ELISA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>40</td>
<td>46</td>
<td>38</td>
<td>41</td>
</tr>
<tr>
<td>Negative</td>
<td>10</td>
<td>4</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Negative</td>
<td>41</td>
<td>45</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>80</td>
<td>92</td>
<td>76</td>
<td>82</td>
</tr>
<tr>
<td>Specificity</td>
<td>82</td>
<td>90</td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td>PPV</td>
<td>81.6</td>
<td>90.1</td>
<td>88.3</td>
<td>80.8</td>
</tr>
<tr>
<td>NPV</td>
<td>80.3</td>
<td>91.8</td>
<td>80.8</td>
<td>81.6</td>
</tr>
</tbody>
</table>

Abbreviations: CFM = Cysticercus fasciolaris membrane; CFS = C. fasciolaris scolex; CCM = Cysticercus cellulosae membrane; CCS = C. cellulosae scolex; PPV = positive predictive value; NPV = negative predictive value
60 days compared with a minimum of 6 months for the human-pig cycle [21], rats are easier to breed in laboratory conditions, and are lower in cost.

Acknowledgment

The authors wish to acknowledge the Indian Council of Medical Research, New Delhi, India, for funding and supporting this research.

References

5. Morakote N, Nawacharoen W, Sukonthasun K, Thammasonthi W, Khamboonruang C. Comparison of cysticerus extract,
Immunodiagnosis of neurocysticercosis

